Halogenated chiral molecules have become important in several fields of science, industry, and society as drugs, natural compounds, agrochemicals, environmental pollutants, synthetic products, and chiral supports. Meanwhile, the perception of the halogen moiety in organic compounds and its role in recognition processes changed. Indeed, the recognition of the halogen bond as an intermolecular interaction occurring when the halogen acts as a Lewis acid had a strong impact, particularly in crystal engineering and medicinal chemistry. Due to this renewed interest in the potentialities of chiral organohalogens, here we focus on selected recent applications dealing with enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases (CSPs), widely used in liquid chromatography (LC). In particular, recently the first case of halogen bonding-driven high-performance LC (HPLC) enantioseparation was reported on a cellulose-based CSP. Along with enantioseparations performed under conventional HPLC, representative applications using supercritical fluid chromatography (SFC) are reported.

Liquid Chromatography Enantioseparations of Halogenated Compounds on Polysaccharide-Based Chiral Stationary Phases: Role of Halogen Substituents in Molecular Recognition

Peluso P;
2015

Abstract

Halogenated chiral molecules have become important in several fields of science, industry, and society as drugs, natural compounds, agrochemicals, environmental pollutants, synthetic products, and chiral supports. Meanwhile, the perception of the halogen moiety in organic compounds and its role in recognition processes changed. Indeed, the recognition of the halogen bond as an intermolecular interaction occurring when the halogen acts as a Lewis acid had a strong impact, particularly in crystal engineering and medicinal chemistry. Due to this renewed interest in the potentialities of chiral organohalogens, here we focus on selected recent applications dealing with enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases (CSPs), widely used in liquid chromatography (LC). In particular, recently the first case of halogen bonding-driven high-performance LC (HPLC) enantioseparation was reported on a cellulose-based CSP. Along with enantioseparations performed under conventional HPLC, representative applications using supercritical fluid chromatography (SFC) are reported.
2015
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
Chiral separation
Halogen bonding
Halogenated compounds
Molecular recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/290356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
social impact