Non-destructive geophysical prospecting methods are increasingly used for the investigation of archaeological sites, especially where a detailed physical and geometrical reconstruction of structures is required prior to any excavationwork.Often, due to the limited size and depth of an archaeological structure, it may be rather difficult to single out its position and extent because of the generally low signal-to-noise (S/N) ratio. This can be overcome by improving data acquisition and processing techniques and integrating different geophysical methods. In this work the results of a multimethodological surveys, used with the aim of detecting sharp discontinuities (boundary of cavities and fractures in the host medium) at the Archaeological Test Site of Sabine Necropolis at Research Area of National Research Council of Rome (Montelibretti, Italy) are shown. For the survey a combination of passive and active methods (magnetic, ground-penetrating radar (GPR), and dipole-dipole geoelectric (DDG)), topographical and three-dimensional laser scanner surveys and archaeological excavations were used to study the state of conservation of underground tombs. With all geophysical methods a high-resolution data acquisition was adopted with the aim of reconstructing a global vision of the study area. Signal processing and amplitude time-slice representation techniques were used for the analysis of GPR data. The bi-dimensional cross-correlation technique was applied to enhance the S/N ratio of the magnetic data. An example of the integration (both qualitative and quantitative) of these results is presented for a portion of the investigated area in the Sabine Necropolis at Colle del Forno (Rome, Italy). Archaeological excavations were then conducted systematically after completing the geophysical surveys and interpretations (from 2000 to 2006), which confirmed the location and shape of the individual chamber tombs with associated corridors.

Multimethodological approach to investigate chamber tombs in the Sabine Necropolis at Colle del Forno (CNR, Rome, Italy)

Piro S;Gabrielli R
2009

Abstract

Non-destructive geophysical prospecting methods are increasingly used for the investigation of archaeological sites, especially where a detailed physical and geometrical reconstruction of structures is required prior to any excavationwork.Often, due to the limited size and depth of an archaeological structure, it may be rather difficult to single out its position and extent because of the generally low signal-to-noise (S/N) ratio. This can be overcome by improving data acquisition and processing techniques and integrating different geophysical methods. In this work the results of a multimethodological surveys, used with the aim of detecting sharp discontinuities (boundary of cavities and fractures in the host medium) at the Archaeological Test Site of Sabine Necropolis at Research Area of National Research Council of Rome (Montelibretti, Italy) are shown. For the survey a combination of passive and active methods (magnetic, ground-penetrating radar (GPR), and dipole-dipole geoelectric (DDG)), topographical and three-dimensional laser scanner surveys and archaeological excavations were used to study the state of conservation of underground tombs. With all geophysical methods a high-resolution data acquisition was adopted with the aim of reconstructing a global vision of the study area. Signal processing and amplitude time-slice representation techniques were used for the analysis of GPR data. The bi-dimensional cross-correlation technique was applied to enhance the S/N ratio of the magnetic data. An example of the integration (both qualitative and quantitative) of these results is presented for a portion of the investigated area in the Sabine Necropolis at Colle del Forno (Rome, Italy). Archaeological excavations were then conducted systematically after completing the geophysical surveys and interpretations (from 2000 to 2006), which confirmed the location and shape of the individual chamber tombs with associated corridors.
2009
Istituto per le Tecnologie Applicate ai Beni Culturali - ITABC - Sede Montelibretti
Istituto di Scienze del Patrimonio Culturale - ISPC
SabineNecropolis
magnetic
ground-penetrating radar
resistivity
integration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact