Primary nucleation of spherulites in blends of isotactic polypropylene (iPP) with low density polyethylene (LDPE) was investigated by means of differential scanning calorimetry and optical microscopy. The number of iPP spherulites in the blend decreases with increasing LDPE concentration to a much greater extent than follows from the decreasing amount of iPP. The shapes of spherulite size distributions indicate that athermal (heterogeneous) primary nucleation is inhibited. The density of primary nucleation in the blends decreases strongly with increasing mixing time. The same effect was observed in the blends with the nucleating agent which was added to iPP or LDPE. These experiments demonstrate that heterogenoeus nuclei migrate across interphase boundaries from the iPP melt to the LDPE melt during the mixing process. It is suggested that the interfacial energy difference between the nuclei and the molten components of the blend is responsible for the migration of nuclei. © 1984.

Spherulite nucleation in polypropylene blends with low density polyethylene

Pracella Mariano
1984

Abstract

Primary nucleation of spherulites in blends of isotactic polypropylene (iPP) with low density polyethylene (LDPE) was investigated by means of differential scanning calorimetry and optical microscopy. The number of iPP spherulites in the blend decreases with increasing LDPE concentration to a much greater extent than follows from the decreasing amount of iPP. The shapes of spherulite size distributions indicate that athermal (heterogeneous) primary nucleation is inhibited. The density of primary nucleation in the blends decreases strongly with increasing mixing time. The same effect was observed in the blends with the nucleating agent which was added to iPP or LDPE. These experiments demonstrate that heterogenoeus nuclei migrate across interphase boundaries from the iPP melt to the LDPE melt during the mixing process. It is suggested that the interfacial energy difference between the nuclei and the molten components of the blend is responsible for the migration of nuclei. © 1984.
1984
blends
crystallization
nuclei migration
polyethylene
polypropylene
primary nucleation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/290442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? ND
social impact