Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.

Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments

Di Vincenzo G;
2015

Abstract

Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.
2015
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Antarctica
Melbourne volcanic province
gravity cores
marine tephra
40Ar-39Ar dating
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/290751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact