This article proposes a Bayesian density estimation method based upon mixtures of gamma distributions. It considers both the cases of known mixture size, using a Gibbs sampling scheme with a Metropolis step, and unknown mixture size, using a reversible jump technique that allows us to move from one mixture size to another. We illustrate our methods using a number of simulated datasets, generated from distributions covering a wide range of cases: single distributions, mixtures of distributions with equal means and different variances, mixtures of distributions with different means and small variances and, finally, a distribution contaminated by low-weighted distributions with different means and equal, small variances. An application to estimation of some quantities for a M/G/1 queue is given, using real E-mail data from CNR-IAMI. © 2001 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

Mixtures of gamma distributions with applications

Ruggeri Fabrizio
2001

Abstract

This article proposes a Bayesian density estimation method based upon mixtures of gamma distributions. It considers both the cases of known mixture size, using a Gibbs sampling scheme with a Metropolis step, and unknown mixture size, using a reversible jump technique that allows us to move from one mixture size to another. We illustrate our methods using a number of simulated datasets, generated from distributions covering a wide range of cases: single distributions, mixtures of distributions with equal means and different variances, mixtures of distributions with different means and small variances and, finally, a distribution contaminated by low-weighted distributions with different means and equal, small variances. An application to estimation of some quantities for a M/G/1 queue is given, using real E-mail data from CNR-IAMI. © 2001 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
2001
Bayesian inference
M/G/1 queues
MCMC
Reversible jump
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? ND
social impact