We find that cerebellar granule neurons (CGN) obtained from newborn rats (p3) migrate in response to both CXC chemokine ligand-2 (CXCL2) and -12 (CXCL12), while CGN from p7 rats are unresponsive to CXCL2. The expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptor 1 (GluR1) greatly impairs the chemotaxis induced by CXCL2 in CXCR2 -expressing HEK cells. By immunoprecipitation, we show that CXCR2 is associated with AMPA receptors (AMPARs) in p7 CGN, and with GluR1 coexpressed in HEK cells. Taken together, these results suggest that the association between CXCR2 and AMPARs results in the inhibition of CXCL2-dependent chemotaxis, and may represent a molecular mechanism underlying the modulation of nerve cell migration. (C) 2002 Elsevier Science B.V. All rights reserved.
Expression of AMPA-type glutamate receptors in HEK cells and cerebellar granule neurons impairs CXCL2-mediated chemotaxis
Ciotti MT;
2003
Abstract
We find that cerebellar granule neurons (CGN) obtained from newborn rats (p3) migrate in response to both CXC chemokine ligand-2 (CXCL2) and -12 (CXCL12), while CGN from p7 rats are unresponsive to CXCL2. The expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptor 1 (GluR1) greatly impairs the chemotaxis induced by CXCL2 in CXCR2 -expressing HEK cells. By immunoprecipitation, we show that CXCR2 is associated with AMPA receptors (AMPARs) in p7 CGN, and with GluR1 coexpressed in HEK cells. Taken together, these results suggest that the association between CXCR2 and AMPARs results in the inhibition of CXCL2-dependent chemotaxis, and may represent a molecular mechanism underlying the modulation of nerve cell migration. (C) 2002 Elsevier Science B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


