Graphene formation on top of SiC(0001) by decoupling the carbon buffer layer through lithium intercalation is investigated. Low-energy electron diffraction and core-level photoemission spectroscopy results show that graphene formation already occurs at room temperature, and that the interface morphology is improved after thermal annealing. Angle-resolved photoemission spectroscopy (ARPES) shows that the resulting graphene layer is strongly n-type doped, and in spite of the decoupling by lithium intercalation, a persistent interaction with the substrate imposes a superperiodicity on the graphene band structure that modulates the pi band intensity and gives rise to quasi-(2 x 2) pi replica bands. Through a comparison of the ARPES-derived band structure with density-functional-theory calculations, we assign the observed bands to SiC-derived states and interface-related ones; this assignment permits us to establish that the intercalated lithium occupies the T4 site on the topmost SiC layer.

Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation

Profeta G;Sheverdyaeva P M;Moras P;Ottaviano L
2015

Abstract

Graphene formation on top of SiC(0001) by decoupling the carbon buffer layer through lithium intercalation is investigated. Low-energy electron diffraction and core-level photoemission spectroscopy results show that graphene formation already occurs at room temperature, and that the interface morphology is improved after thermal annealing. Angle-resolved photoemission spectroscopy (ARPES) shows that the resulting graphene layer is strongly n-type doped, and in spite of the decoupling by lithium intercalation, a persistent interaction with the substrate imposes a superperiodicity on the graphene band structure that modulates the pi band intensity and gives rise to quasi-(2 x 2) pi replica bands. Through a comparison of the ARPES-derived band structure with density-functional-theory calculations, we assign the observed bands to SiC-derived states and interface-related ones; this assignment permits us to establish that the intercalated lithium occupies the T4 site on the topmost SiC layer.
2015
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
EPITAXIAL GRAPHENE; BILAYER GRAPHENE; DEPOSITION; SIC(0001)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact