A new series of nonoxido vanadium(IV) compounds [VL2] (L = L(1)-L(3)) (1-3) have been synthesized using dithiocarbazate-based tridentate Schiff-base ligands H2L(1)-H2L(3), containing an appended phenol ring with a tert-butyl substitution at the 2-position. The compounds are characterized by X-ray diffraction analysis (1, 3), IR, UV-vis, EPR spectroscopy, and electrochemical methods. These are nonoxido V(IV) complexes that reveal a rare distorted trigonal prismatic arrangement around the "bare" vanadium centers. Concerning the ligand isomerism, the structure of 1 and 3 can be described as intermediate between mer and sym-fac isomers. DFT methods were used to predict the geometry, g and (51)V A tensors, electronic structure, and electronic absorption spectrum of compounds 1-3. Hyperfine coupling constants measured in the EPR spectra can be reproduced satisfactorily at the level of theory PBE0/VTZ, whereas the wavelength and intensity of the absorptions in the UV-vis spectra at the level CAM-B3LYP/gen, where "gen" is a general basis set obtained using 6-31+g(d) for S and 6-31g for all the other elements. The results suggest that the electronic structure of 1-3 can be described in terms of a mixing among V-dxy, V-dxz, and V-dyz orbitals in the singly occupied molecular orbital (SOMO), which causes a significant lowering of the absolute value of the (51)V hyperfine coupling constant along the x-axis. The cyclic voltammograms of these compounds in dichloroethane solution display three one-electron processes, two in the cathodic and one in the anodic potential range. Process A (E1/2 = +1.06 V) is due to the quasi-reversible V(IV/V) oxidation while process B at E1/2 = -0.085 V is due to the quasi-reversible V(IV/III) reduction, and the third one (process C) at a more negative potential E1/2 = -1.66 V is due to a ligand centered reduction, all potentials being measured vs Ag/AgCl reference.

Nonoxido Vanadium(IV) Compounds Involving Dithiocarbazate-Based Tridentate ONS Ligands: Synthesis, Electronic and Molecular Structure, Spectroscopic and Redox Properties.

Sanna Daniele;Garribba Eugenio;
2015

Abstract

A new series of nonoxido vanadium(IV) compounds [VL2] (L = L(1)-L(3)) (1-3) have been synthesized using dithiocarbazate-based tridentate Schiff-base ligands H2L(1)-H2L(3), containing an appended phenol ring with a tert-butyl substitution at the 2-position. The compounds are characterized by X-ray diffraction analysis (1, 3), IR, UV-vis, EPR spectroscopy, and electrochemical methods. These are nonoxido V(IV) complexes that reveal a rare distorted trigonal prismatic arrangement around the "bare" vanadium centers. Concerning the ligand isomerism, the structure of 1 and 3 can be described as intermediate between mer and sym-fac isomers. DFT methods were used to predict the geometry, g and (51)V A tensors, electronic structure, and electronic absorption spectrum of compounds 1-3. Hyperfine coupling constants measured in the EPR spectra can be reproduced satisfactorily at the level of theory PBE0/VTZ, whereas the wavelength and intensity of the absorptions in the UV-vis spectra at the level CAM-B3LYP/gen, where "gen" is a general basis set obtained using 6-31+g(d) for S and 6-31g for all the other elements. The results suggest that the electronic structure of 1-3 can be described in terms of a mixing among V-dxy, V-dxz, and V-dyz orbitals in the singly occupied molecular orbital (SOMO), which causes a significant lowering of the absolute value of the (51)V hyperfine coupling constant along the x-axis. The cyclic voltammograms of these compounds in dichloroethane solution display three one-electron processes, two in the cathodic and one in the anodic potential range. Process A (E1/2 = +1.06 V) is due to the quasi-reversible V(IV/V) oxidation while process B at E1/2 = -0.085 V is due to the quasi-reversible V(IV/III) reduction, and the third one (process C) at a more negative potential E1/2 = -1.66 V is due to a ligand centered reduction, all potentials being measured vs Ag/AgCl reference.
2015
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
vanadium(IV)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact