The observation of volcanic thermal activity from space dates back to the late 1960s. Several methods have been proposed to improve detection and monitoring capabilities of thermal volcanic features, and to characterize them to improve our understanding of volcanic processes, as well as to inform operational decisions. In this paper we review the RSTVOLC algorithm, which has been designed and implemented for automated detection and near-real-time monitoring of volcanic hotspots. The algorithm is based on the general Robust Satellite Techniques (RST) approach, representing an original strategy for satellite data analysis in the space-time domain. It has proven to be a useful tool for investigating volcanoes worldwide, by means of different satellite sensors, onboard polar orbiting and geostationary platforms. The RSTVOLC rationale, its requirements and main operational capabilities are described here, together with the advantages of the tool and the known limitations. Results achieved through the study of two past eruptive events are shown, together with some recent examples demonstrating the near-continuous monitoring capability offered by RSTVOLC. A summary is also made of the type products that the method is able to generate and provide. Lastly, the future perspectives, in terms of its possible implementation on the new generation of satellite systems, are briefly discussed.

A review of RSTVOLC, an original algorithm for automatic detection and near-real-time monitoring of volcanic hotspots from space

NICOLA PERGOLA;CAROLINA FILIZZOLA;TEODOSIO LACAVA;FRANCESCO MARCHESE;ROSSANA PACIELLO;
2016

Abstract

The observation of volcanic thermal activity from space dates back to the late 1960s. Several methods have been proposed to improve detection and monitoring capabilities of thermal volcanic features, and to characterize them to improve our understanding of volcanic processes, as well as to inform operational decisions. In this paper we review the RSTVOLC algorithm, which has been designed and implemented for automated detection and near-real-time monitoring of volcanic hotspots. The algorithm is based on the general Robust Satellite Techniques (RST) approach, representing an original strategy for satellite data analysis in the space-time domain. It has proven to be a useful tool for investigating volcanoes worldwide, by means of different satellite sensors, onboard polar orbiting and geostationary platforms. The RSTVOLC rationale, its requirements and main operational capabilities are described here, together with the advantages of the tool and the known limitations. Results achieved through the study of two past eruptive events are shown, together with some recent examples demonstrating the near-continuous monitoring capability offered by RSTVOLC. A summary is also made of the type products that the method is able to generate and provide. Lastly, the future perspectives, in terms of its possible implementation on the new generation of satellite systems, are briefly discussed.
2016
Istituto di Metodologie per l'Analisi Ambientale - IMAA
volcanoes
remote sensing
RSTvolc
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact