The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs), located at ca. 3000-3500m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat ("isolated islands of evolution"), makingDHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.
Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats
MichailM Yakimov;Violetta LaCono;
2014
Abstract
The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs), located at ca. 3000-3500m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat ("isolated islands of evolution"), makingDHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.