The paper describes methods for using Extremal Optimization (EO) for processor load balancing during execution of distributed applications. A load balancing algorithm for clusters of multicore processors is presented and discussed. In this algorithm the EO approach is used to periodically detect the best tasks as candidates for migration and for a guided selection of the best computing nodes to receive the migrating tasks. To decrease the complexity of selection for migration, the embedded EO algorithm assumes a two-step stochastic selection during the solution improvement based on two separate fitness functions. The functions are based on specific models which estimate relations between the programs and the executive hardware. The proposed load balancing algorithm is assessed by experiments with simulated load balancing of distributed program graphs. The algorithm is compared against a greedy fully deterministic approach, a genetic algorithm and an EO-based algorithm with random placement of migrated tasks. (C) 2015 Elsevier B.V. All rights reserved.

Extremal Optimization applied to load balancing in execution of distributed programs

De Falco Ivanoe;Scafuri Umberto;Tarantino Ernesto;
2015

Abstract

The paper describes methods for using Extremal Optimization (EO) for processor load balancing during execution of distributed applications. A load balancing algorithm for clusters of multicore processors is presented and discussed. In this algorithm the EO approach is used to periodically detect the best tasks as candidates for migration and for a guided selection of the best computing nodes to receive the migrating tasks. To decrease the complexity of selection for migration, the embedded EO algorithm assumes a two-step stochastic selection during the solution improvement based on two separate fitness functions. The functions are based on specific models which estimate relations between the programs and the executive hardware. The proposed load balancing algorithm is assessed by experiments with simulated load balancing of distributed program graphs. The algorithm is compared against a greedy fully deterministic approach, a genetic algorithm and an EO-based algorithm with random placement of migrated tasks. (C) 2015 Elsevier B.V. All rights reserved.
2015
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Distributed programs
Extremal optimization
Load balancing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
social impact