Interest on the genus Camelina has recently increased due to the biofuel, or jet fuel, potential of the oil extracted from seeds of the cultivated species Camelina sativa (L.) Crantz. While our knowledge on C. sativa is constantly augmenting, only few studies have been performed on the other species of the genus, which could be a potentially useful material for the genetic improvement of C. sativa. The genus Camelina consists of 11 species, but only six (C. sativa, C. microcarpa, C. alyssum, C. rumelica, C. hispida and C. laxa) could be retrieved from germplasm banks to carry out genomic fingerprinting studies based on the use of the cTBP molecular marker. Each species, with the exception of C. alyssum that is proposed to be a subspecies of C. sativa, shows a distinct cTBP profile resulting from multiple DNA length polymorphisms present in the second intron of the members of the ?-tubulin gene family. In contrast to the high level of genetic diversity detected among the six Camelina species, low variability is observed among and within the accessions of the same species, except for C. hispida that is characterized by an intra-accession high number of cTBP polymorphic bands. In addition, cTBP is also able to identify incorrectly classified accessions and provide information on the ploidy level of each species.

Genomic Fingerprinting of Camelina Species Using cTBP as Molecular Marker

Incoronata Galasso;Antonella Manca;Luca Braglia;Elena Ponzoni;Diego Breviario
2015

Abstract

Interest on the genus Camelina has recently increased due to the biofuel, or jet fuel, potential of the oil extracted from seeds of the cultivated species Camelina sativa (L.) Crantz. While our knowledge on C. sativa is constantly augmenting, only few studies have been performed on the other species of the genus, which could be a potentially useful material for the genetic improvement of C. sativa. The genus Camelina consists of 11 species, but only six (C. sativa, C. microcarpa, C. alyssum, C. rumelica, C. hispida and C. laxa) could be retrieved from germplasm banks to carry out genomic fingerprinting studies based on the use of the cTBP molecular marker. Each species, with the exception of C. alyssum that is proposed to be a subspecies of C. sativa, shows a distinct cTBP profile resulting from multiple DNA length polymorphisms present in the second intron of the members of the ?-tubulin gene family. In contrast to the high level of genetic diversity detected among the six Camelina species, low variability is observed among and within the accessions of the same species, except for C. hispida that is characterized by an intra-accession high number of cTBP polymorphic bands. In addition, cTBP is also able to identify incorrectly classified accessions and provide information on the ploidy level of each species.
2015
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Genetic Diversity
Polymorphism
?-Tubulin Gene Family
False Flax
Chromosome Number
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact