The full-wave electromagnetic characterization of reconfigurable antenna sensors for non-invasive detection of melanoma-related anomalies of the skin is presented. To this end, an enhanced locally conformal finite-difference time-domain procedure, based on the definition of effective material parameters and a suitable normalization of the electromagnetic field-related quantities, is adopted. In this way, an insightful understanding of the physical processes responsible for the performance of considered class of devices is achieved. This in turn is important in order to enhance the structure reliability, optimizing the design cycle. A suitable microelectromechanical-system-based sensor layout is finally discussed in details.
Accurate Time-Domain Modeling of Reconfigurable Antenna Sensors for Non-Invasive Melanoma Skin Cancer Detection
Massaro Alessandro;
2012
Abstract
The full-wave electromagnetic characterization of reconfigurable antenna sensors for non-invasive detection of melanoma-related anomalies of the skin is presented. To this end, an enhanced locally conformal finite-difference time-domain procedure, based on the definition of effective material parameters and a suitable normalization of the electromagnetic field-related quantities, is adopted. In this way, an insightful understanding of the physical processes responsible for the performance of considered class of devices is achieved. This in turn is important in order to enhance the structure reliability, optimizing the design cycle. A suitable microelectromechanical-system-based sensor layout is finally discussed in details.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


