The advances in miniaturized mechanical devices open exciting new opportunities for com- bustion, especially in the field of micro power generation, allowing the development of power-supply devices with high specific energy (small size, low weight, long duration). Even at 10% energy conversion efficiency hydrocarbon fuels can provide 10 times the energy den- sity of the most advanced batteries. Therefore, the growing interest in miniaturized devices is further boosted by the desire to replace batteries with hydrocarbon-based fuels for port- able power sources. In this context, both homogeneous combustion and catalytic reactors are of major interest. The development of a device based on catalytic combustor coupled with thermoelectric modules is particularly attracting for combustion stability and safety. Furthermore, when implemented in micro-meso scale devices, catalytic combustion allows fully utilization of the high energy densities of hydrocarbon fuels, but at notably lower operating temperatures than those typical of traditional combustion. These conditions are more suitable for coupling with conventional thermoelectric modules, preventing their degradation. In this work a novel catalytic meso-scale combustor fuelled with propane/air mixture has been coupled with two conventional thermoelectric modules. The wafer-like combustor is filled up with commercially-available catalytic pellets of alumina with Platinum (1% weight). In order to calibrate the operating conditions, the analysis of the temperature values and distribution across the combustor surfaces have been carried out. Characterization of exhaust gases concentration and of pellet aging were performed in order to investigate combustor properties. The results of the combustor behavior characterization guided the coupling of the combustor with commercially available thermoelectric modules using at the cold side a water cooled heat exchanger. The system obtained has been charac- terized in different operating conditions measuring the delivered electric power in different operating conditions. Efficiency estimation proves that the system is suitable for small port- able power generation.

Study of a catalytic meso-scale combustor coupled with thermoelectrical devices for portable energy production

Fanciulli Carlo;Merotto Laura;Passaretti Francesca;De Iuliis Silvana
2015

Abstract

The advances in miniaturized mechanical devices open exciting new opportunities for com- bustion, especially in the field of micro power generation, allowing the development of power-supply devices with high specific energy (small size, low weight, long duration). Even at 10% energy conversion efficiency hydrocarbon fuels can provide 10 times the energy den- sity of the most advanced batteries. Therefore, the growing interest in miniaturized devices is further boosted by the desire to replace batteries with hydrocarbon-based fuels for port- able power sources. In this context, both homogeneous combustion and catalytic reactors are of major interest. The development of a device based on catalytic combustor coupled with thermoelectric modules is particularly attracting for combustion stability and safety. Furthermore, when implemented in micro-meso scale devices, catalytic combustion allows fully utilization of the high energy densities of hydrocarbon fuels, but at notably lower operating temperatures than those typical of traditional combustion. These conditions are more suitable for coupling with conventional thermoelectric modules, preventing their degradation. In this work a novel catalytic meso-scale combustor fuelled with propane/air mixture has been coupled with two conventional thermoelectric modules. The wafer-like combustor is filled up with commercially-available catalytic pellets of alumina with Platinum (1% weight). In order to calibrate the operating conditions, the analysis of the temperature values and distribution across the combustor surfaces have been carried out. Characterization of exhaust gases concentration and of pellet aging were performed in order to investigate combustor properties. The results of the combustor behavior characterization guided the coupling of the combustor with commercially available thermoelectric modules using at the cold side a water cooled heat exchanger. The system obtained has been charac- terized in different operating conditions measuring the delivered electric power in different operating conditions. Efficiency estimation proves that the system is suitable for small port- able power generation.
2015
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Catalytic combustor
Thermoelectric generator.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/291954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact