Electrolyte-gated (EG) transistors, based on electrolyte gating media, are powerful device structures to modulate the charge carrier density of materials by orders of magnitude, at relatively low operating voltages (sub-2 V). Tungsten trioxide (WO3) is a metal oxide semiconductor well investigated for applications in electrochromism, sensing, photocatalysis, and photoelectrochemistry. In this work, we report on EG transistors making use of mesoporous nanostructured WO3 thin films easily permeated by the electrolyte as the transistor channel and bis(trifluoromethylsulfonyl)imide ([TFSI])-based ionic liquids as the gating media. The WO3 EG transistors operate at ca. 1 V. Using a combination of cyclic voltammetry, X-ray diffraction, and transistor performance characterizations, complemented by spectroscopic (Raman and infrared) investigations, we correlate the metal oxidation state and the charge transport properties of the metal oxide, shedding light on the doping process in electrically biased WO3 nanostructured thin films exposed to electrolytes.

Electrolyte-Gated WO3 Transistors: Electrochemistry, Structure, and Device Performance

Natile MM;
2015

Abstract

Electrolyte-gated (EG) transistors, based on electrolyte gating media, are powerful device structures to modulate the charge carrier density of materials by orders of magnitude, at relatively low operating voltages (sub-2 V). Tungsten trioxide (WO3) is a metal oxide semiconductor well investigated for applications in electrochromism, sensing, photocatalysis, and photoelectrochemistry. In this work, we report on EG transistors making use of mesoporous nanostructured WO3 thin films easily permeated by the electrolyte as the transistor channel and bis(trifluoromethylsulfonyl)imide ([TFSI])-based ionic liquids as the gating media. The WO3 EG transistors operate at ca. 1 V. Using a combination of cyclic voltammetry, X-ray diffraction, and transistor performance characterizations, complemented by spectroscopic (Raman and infrared) investigations, we correlate the metal oxidation state and the charge transport properties of the metal oxide, shedding light on the doping process in electrically biased WO3 nanostructured thin films exposed to electrolytes.
2015
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Cyclic voltammetry
Electrochemistry
Electrolytes
Ionic liquids
Metallic compounds
Metals
MOS devices
File in questo prodotto:
File Dimensione Formato  
prod_334411-doc_104145.pdf

solo utenti autorizzati

Descrizione: Electrolyte-Gated WO3 Transistors: Electrochemistry, Structure, and Device Performance
Tipologia: Versione Editoriale (PDF)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/292022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 43
social impact