Fluorosis is caused by excess of fluoride intake over a long period of time. Aberrant change in the Runt-related transcription factor 2 (RUNX2) mediated signaling cascade is one of the decisive steps during the pathogenesis of fluorosis. Up to date, role of fluoride on the epigenetic alterations is not studied. In the present study, global expression profiling of short noncoding RNAs, in particular miRNAs and snoRNAs, was carried out in sodium fluoride (NaF) treated human osteosarcoma (HOS) cells to understand their possible role in the development of fluorosis. qPCR and in silico hybridization revealed that miR-124 and miR-155 can be directly involved in the transcriptional regulation of Runt-related transcription factor 2 (RUNX2) and receptor activator of nuclear factor ?-B ligand (RANKL) genes. Compared to control, C/D box analysis revealed marked elevation in the number of UG dinucleotides and D-box sequences in NaF exposed HOS cells. Herein, we report miR-124 and miR-155 as the new possible players involved in the development of fluorosis. We show that the alterations in UG dinucleotides and D-box sequences of snoRNAs could be due to NaF exposure.

Noncoding RNAs: Possible Players in the Development of Fluorosis

Patrizio Arrigo;
2015

Abstract

Fluorosis is caused by excess of fluoride intake over a long period of time. Aberrant change in the Runt-related transcription factor 2 (RUNX2) mediated signaling cascade is one of the decisive steps during the pathogenesis of fluorosis. Up to date, role of fluoride on the epigenetic alterations is not studied. In the present study, global expression profiling of short noncoding RNAs, in particular miRNAs and snoRNAs, was carried out in sodium fluoride (NaF) treated human osteosarcoma (HOS) cells to understand their possible role in the development of fluorosis. qPCR and in silico hybridization revealed that miR-124 and miR-155 can be directly involved in the transcriptional regulation of Runt-related transcription factor 2 (RUNX2) and receptor activator of nuclear factor ?-B ligand (RANKL) genes. Compared to control, C/D box analysis revealed marked elevation in the number of UG dinucleotides and D-box sequences in NaF exposed HOS cells. Herein, we report miR-124 and miR-155 as the new possible players involved in the development of fluorosis. We show that the alterations in UG dinucleotides and D-box sequences of snoRNAs could be due to NaF exposure.
2015
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
ncRNA
environmental genomics
File in questo prodotto:
File Dimensione Formato  
prod_331630-doc_102405.pdf

accesso aperto

Descrizione: Noncoding RNAs: Possible Players in the Development of Fluorosis
Tipologia: Versione Editoriale (PDF)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/292443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact