Numerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid. Both the intrinsic viscosity and the thickness of depletion layers near the walls are found to increase with increasing viscosity ratio.

Rheological properties of sheared vesicle and cell suspensions

A Lamura;
2015

Abstract

Numerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid. Both the intrinsic viscosity and the thickness of depletion layers near the walls are found to increase with increasing viscosity ratio.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
Vesicles
Rheology
Shear flow
Numerical modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/292667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact