Benefits provided by higher order bidirectional Raman pumping schemes in 10-Gb/s unrepeated wavelength-division-multiplexing transmission systems are experimentally quantified in terms of BER performances at 10 Gb/s. By keeping under control double-Rayleigh-scattering-noise-induced transmission penalties, which can degrade system performance at very high ON-OFF Raman gain, as well as nonlinear propagation effects such as Brillouin scattering, self- and cross-phase modulations, four-wave-mixing, and Raman-induced crosstalks, we show a total unrepeated system reach enhancement up to 3.5 dB with respect to first-order bidirectional pumping. As confirmed by theory, the maximum reach enhancement is mainly limited by pump-to-signal relative intensity noise transfer induced by higher order copumping. © 2005 IEEE.
Bidirectional higher order cascaded Raman amplification benefits for 10-Gb/s WDM unrepeated transmission systems
Bolognini Gabriele;
2005
Abstract
Benefits provided by higher order bidirectional Raman pumping schemes in 10-Gb/s unrepeated wavelength-division-multiplexing transmission systems are experimentally quantified in terms of BER performances at 10 Gb/s. By keeping under control double-Rayleigh-scattering-noise-induced transmission penalties, which can degrade system performance at very high ON-OFF Raman gain, as well as nonlinear propagation effects such as Brillouin scattering, self- and cross-phase modulations, four-wave-mixing, and Raman-induced crosstalks, we show a total unrepeated system reach enhancement up to 3.5 dB with respect to first-order bidirectional pumping. As confirmed by theory, the maximum reach enhancement is mainly limited by pump-to-signal relative intensity noise transfer induced by higher order copumping. © 2005 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


