Heart failure is the leading cause of death in the elderly, but whether this is the result of a primary aging myopathy dictated by depletion of the cardiac progenitor cell (CPC) pool is unknown. Similarly, whether current lifespan reflects the ineluctable genetic clock or heart failure interferes with the genetically determined fate of the organ and organism is an important question. We have identified that chronological age leads to telomeric shortening in CPCs, which by necessity generate a differentiated progeny that rapidly acquires the senescent phenotype conditioning organ aging. CPC aging is mediated by attenuation of the insulin-like growth factor-1/insulin-like growth factor-1 receptor and hepatocyte growth factor/c-Met systems, which do not counteract any longer the CPC renin-angiotensin system, resulting in cellular senescence, growth arrest, and apoptosis. However, pulse-chase 5-bromodeoxyuridine-labeling assay revealed that the senescent heart contains functionally competent CPCs that have the properties of stem cells. This subset of telomerase-competent CPCs have long telomeres and, following activation, migrate to the regions of damage, where they generate a population of young cardiomyocytes, reversing partly the aging myopathy. The senescent heart phenotype and heart failure are corrected to some extent, leading to prolongation of maximum lifespan.

Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan

Bearzi Claudia;
2008

Abstract

Heart failure is the leading cause of death in the elderly, but whether this is the result of a primary aging myopathy dictated by depletion of the cardiac progenitor cell (CPC) pool is unknown. Similarly, whether current lifespan reflects the ineluctable genetic clock or heart failure interferes with the genetically determined fate of the organ and organism is an important question. We have identified that chronological age leads to telomeric shortening in CPCs, which by necessity generate a differentiated progeny that rapidly acquires the senescent phenotype conditioning organ aging. CPC aging is mediated by attenuation of the insulin-like growth factor-1/insulin-like growth factor-1 receptor and hepatocyte growth factor/c-Met systems, which do not counteract any longer the CPC renin-angiotensin system, resulting in cellular senescence, growth arrest, and apoptosis. However, pulse-chase 5-bromodeoxyuridine-labeling assay revealed that the senescent heart contains functionally competent CPCs that have the properties of stem cells. This subset of telomerase-competent CPCs have long telomeres and, following activation, migrate to the regions of damage, where they generate a population of young cardiomyocytes, reversing partly the aging myopathy. The senescent heart phenotype and heart failure are corrected to some extent, leading to prolongation of maximum lifespan.
2008
aging cardiomyopathy
cardiac stem cells
telomere
telomerase system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/293857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 150
social impact