In this paper the effect of different humidification strategies on performance of fuel cell systems (FCS) based on proton exchange membrane (PEM) fuel cells was analyzed taking into account the specific requirements of an automotive application. The experiments were conducted on PEM fuel cell systems of different power, ranging from 2.4 to 14 kW. The results showed that the optimal humidification strategy was function of stack operation mode and energy management inside the overall system, and evidenced the benefits and limitations of the self-humidification strategy for an automotive application

The Effect of Humidification Strategies on Efficiency and Durability of Hydrogen Fuel Cells in Automotive Application

F Migliardini;P Corbo
2015

Abstract

In this paper the effect of different humidification strategies on performance of fuel cell systems (FCS) based on proton exchange membrane (PEM) fuel cells was analyzed taking into account the specific requirements of an automotive application. The experiments were conducted on PEM fuel cell systems of different power, ranging from 2.4 to 14 kW. The results showed that the optimal humidification strategy was function of stack operation mode and energy management inside the overall system, and evidenced the benefits and limitations of the self-humidification strategy for an automotive application
2015
Istituto Motori - IM - Sede Napoli
fuel cells
Proton exchange membrane stack
membrane humidification
automotive
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact