In this work, blends of MaterBi K (MBK), a starch based biodegradable polymer with polypropylene (PP), high density polyethylene (HDPE) and polystyrene (PS) were prepared in an intensive mixer PP-g-MA; HDPE-g-MA and SEBS-g-MA were incorporated at 2 wt.% to corresponding matrix respectively in order to analyze the effect of compatibilizer amount on the morphology and final properties. The composites, with 20 wt.% of alkaline treated hemp fibers, were prepared by injection molding. Fracture and water absorption of matrices and composites were studied and the effect of each component was established. Blending of the MB matrix with PP and HDPE did not raise the Jc, with the exception of the MB-S3 blend which has a slight improvement in fracture energy. On the other hand, the fiber incorporation to blends improves significantly the Jc values for all samples compared with their respective matrices. The best result was obtained for the B8-S2 blend and the B8-P2 compatibilized blend. The water absorption of equilibrium was also studied, resulting from 0.3 % to 0.9 % for the polymer blends and raises from 5 % to 7 % for the fiber reinforced blends.

Fracture behaviour of biodegradable polymer/polyolefin-natural fibers ternary composites systems

Pracella Mariano
2014

Abstract

In this work, blends of MaterBi K (MBK), a starch based biodegradable polymer with polypropylene (PP), high density polyethylene (HDPE) and polystyrene (PS) were prepared in an intensive mixer PP-g-MA; HDPE-g-MA and SEBS-g-MA were incorporated at 2 wt.% to corresponding matrix respectively in order to analyze the effect of compatibilizer amount on the morphology and final properties. The composites, with 20 wt.% of alkaline treated hemp fibers, were prepared by injection molding. Fracture and water absorption of matrices and composites were studied and the effect of each component was established. Blending of the MB matrix with PP and HDPE did not raise the Jc, with the exception of the MB-S3 blend which has a slight improvement in fracture energy. On the other hand, the fiber incorporation to blends improves significantly the Jc values for all samples compared with their respective matrices. The best result was obtained for the B8-S2 blend and the B8-P2 compatibilized blend. The water absorption of equilibrium was also studied, resulting from 0.3 % to 0.9 % for the polymer blends and raises from 5 % to 7 % for the fiber reinforced blends.
2014
Biodegradable polymers
Natural fibers
Blends
Fracture behavior
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294073
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact