Differently carboxylic acid end-functionalized poly(lactic acid) (PLA)-based stereocomplexes were used as polymer support to stabilize Pd-nanoparticles (NPs) generated by the metal vapor synthesis technique. The dispersion of Pd was strongly dependent on the end-group present in the polymer structure, as shown by HRTEM measurements. 2,20-Bipyridine- and pyridine-based stereocomplexes showed high metal dispersion (i.e. well-separated Pd-NP size of 2.0 ± 0.6 nm), whereas stereocomplexes bearing benzyl and carboxylic acid end groups exhibited strong Pd-NPs aggregation. The heterogenous catalysts were employed to chemoselectively hydrogenate the C@C double bond in cinnamaldehyde, showing for Pd-NPs, stabilized by the 2,20-bipyridine-modified polymer support, the best performance in terms of chemoselectivity (99%) and recyclability in THF solution. Even under bulk cinnamaldehyde hydrogenation conditions, chemoselectivity for 3-phenylpropanal of 90% at 88% conversion was obtained.

Palladium-nanoparticles on end-functionalized poly(lactic acid)-based stereocomplexes for the chemoselective cinnamaldehyde hydrogenation: Effect of the end-group

Oberhauser Werner;Evangelisti Claudio;Capozzoli Laura;Passaglia Elisa;
2015

Abstract

Differently carboxylic acid end-functionalized poly(lactic acid) (PLA)-based stereocomplexes were used as polymer support to stabilize Pd-nanoparticles (NPs) generated by the metal vapor synthesis technique. The dispersion of Pd was strongly dependent on the end-group present in the polymer structure, as shown by HRTEM measurements. 2,20-Bipyridine- and pyridine-based stereocomplexes showed high metal dispersion (i.e. well-separated Pd-NP size of 2.0 ± 0.6 nm), whereas stereocomplexes bearing benzyl and carboxylic acid end groups exhibited strong Pd-NPs aggregation. The heterogenous catalysts were employed to chemoselectively hydrogenate the C@C double bond in cinnamaldehyde, showing for Pd-NPs, stabilized by the 2,20-bipyridine-modified polymer support, the best performance in terms of chemoselectivity (99%) and recyclability in THF solution. Even under bulk cinnamaldehyde hydrogenation conditions, chemoselectivity for 3-phenylpropanal of 90% at 88% conversion was obtained.
2015
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Poly(lactic acid)
Stereocomplex
Pd-nanoparticles
Hydrogenation
Cinnamaldehyde
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact