We demonstrate the possibility to perform very high-sensitivity spectroscopy Of CO2 around 4.25 mum wavelength, by use of a difference-frequency radiation source and a White-type multipass absorption cell. Several methods for fringing noise reduction were successfully adopted. In particular, a novel technique to reduce fringes by choosing proper values of the frequency modulation amplitude is described in detail. Pressure-broadening measurements of high-J rovibrational transitions are presented. Achievable laboratory and field sensitivity limits are discussed. (C) 2002 Elsevier Science

High-sensitivity spectroscopy of CO2 around 4.25 mu m with difference-frequency radiation

Mazzotti D;Giusfredi G;Cancio P;De Natale P
2002

Abstract

We demonstrate the possibility to perform very high-sensitivity spectroscopy Of CO2 around 4.25 mum wavelength, by use of a difference-frequency radiation source and a White-type multipass absorption cell. Several methods for fringing noise reduction were successfully adopted. In particular, a novel technique to reduce fringes by choosing proper values of the frequency modulation amplitude is described in detail. Pressure-broadening measurements of high-J rovibrational transitions are presented. Achievable laboratory and field sensitivity limits are discussed. (C) 2002 Elsevier Science
2002
Istituto Nazionale di Ottica - INO
Difference-frequency generation
High sensitivity
Multipass absorption cell
Trace gas detection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact