Mixing experiments with 30 THz CO2-laser radiation as well as the detection of 35 ps 30 THz pulses of an optical-free-induction-decay CO2-laser system have been performed with the first nanometer thin-film Ni-NiO-Ni diodes with a minimum contact area of 0.012 mu m(2). Difference frequencies up to 85 MHz were detected by mixing two different CO2-laser beams coupled to the diode with an integrated bow-tie antenna. The dependence of the beat signal on bias voltage, laser power and polarization of the infrared laser radiation was determined.

Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas

1996

Abstract

Mixing experiments with 30 THz CO2-laser radiation as well as the detection of 35 ps 30 THz pulses of an optical-free-induction-decay CO2-laser system have been performed with the first nanometer thin-film Ni-NiO-Ni diodes with a minimum contact area of 0.012 mu m(2). Difference frequencies up to 85 MHz were detected by mixing two different CO2-laser beams coupled to the diode with an integrated bow-tie antenna. The dependence of the beat signal on bias voltage, laser power and polarization of the infrared laser radiation was determined.
1996
Istituto Nazionale di Ottica - INO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact