The chapter presents an automated monitoring system for the detection of dangerous events of elderly people (such as falls) in AAL applications. In order to provide a self-contained technology solution not requiring neither the environment rearrangement, nor the presence of specialized staff, nor a priori information about elderly characteristics/habitude, the focus is placed on the classification of human postures and the detection of related adverse events. The people is detected through a non-wearable device (a TOF camera), overcoming the limitations of the wearable approaches (accelerometers, gyroscopes, etc.) for human monitoring (the devices are prone to be incorrectly worn or forgotten). The system shows high performances in terms of efficiency and reliability on a large real dataset of falls acquired in different conditions. The posture recognition is carried out by using a topological approach on the 3D points cloud. Experimental results validate the soundness of the posture recognition scheme. © 2011 Springer Science+Business Media B.V.

Range imaging for fall detection and posture analysis in ambient assisted living applications

Leone A;Diraco G;Siciliano P
2011

Abstract

The chapter presents an automated monitoring system for the detection of dangerous events of elderly people (such as falls) in AAL applications. In order to provide a self-contained technology solution not requiring neither the environment rearrangement, nor the presence of specialized staff, nor a priori information about elderly characteristics/habitude, the focus is placed on the classification of human postures and the detection of related adverse events. The people is detected through a non-wearable device (a TOF camera), overcoming the limitations of the wearable approaches (accelerometers, gyroscopes, etc.) for human monitoring (the devices are prone to be incorrectly worn or forgotten). The system shows high performances in terms of efficiency and reliability on a large real dataset of falls acquired in different conditions. The posture recognition is carried out by using a topological approach on the 3D points cloud. Experimental results validate the soundness of the posture recognition scheme. © 2011 Springer Science+Business Media B.V.
2011
Istituto per la Microelettronica e Microsistemi - IMM
Fall detection
range camera
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact