We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s -> 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CHx(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4+ and CH42+ ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s -> 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

Kivimaki A;
2015

Abstract

We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s -> 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CHx(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4+ and CH42+ ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s -> 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.
2015
Istituto Officina dei Materiali - IOM -
methane
high-Rydberg
fragmentation
filed ionization
photoexcitation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/294821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact