We exploited the solvatochromic spin-state switching in a spin crossover (SCO) compound based on the Fe-II complex and the simultaneous change of spectroscopic properties for selective multimodal sensing of methanol and ethanol. We demonstrate that sensing capabilities are due to the inclusion of methanol or ethanol molecules into the crystalline structure, which tailors simultaneously the transition temperature, colour, birefringence and vibrational modes. We exploited this capability by integrating a neutral compound, switchable at room temperature, into a micrometric TAG sensitive to the colour and birefringence. The system was characterised by optical microscopy, magnetic susceptibility, Raman spectroscopy and X-ray diffraction.
Multi-modal sensing in spin crossover compounds
Gentili Denis;Liscio Fabiola;Bergenti Ilaria;Ruani Giampiero;Cavallini Massimiliano
2015
Abstract
We exploited the solvatochromic spin-state switching in a spin crossover (SCO) compound based on the Fe-II complex and the simultaneous change of spectroscopic properties for selective multimodal sensing of methanol and ethanol. We demonstrate that sensing capabilities are due to the inclusion of methanol or ethanol molecules into the crystalline structure, which tailors simultaneously the transition temperature, colour, birefringence and vibrational modes. We exploited this capability by integrating a neutral compound, switchable at room temperature, into a micrometric TAG sensitive to the colour and birefringence. The system was characterised by optical microscopy, magnetic susceptibility, Raman spectroscopy and X-ray diffraction.File | Dimensione | Formato | |
---|---|---|---|
prod_333577-doc_171688.pdf
solo utenti autorizzati
Descrizione: Multi-modal sensing in spin crossover compounds
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.