OBJECTIVE: Cross-sectional studies suggest the association between diabetic nephropathy and the PPAR?2 Pro12Ala polymorphism of the peroxisome proliferator-activated receptor ?2 (PPAR?2). Prospective data are limited to microalbuminuria and no information on renal function is available to date. The present study evaluates the association between the Pro12Ala polymorphism of PPAR?2 and the progression of albuminuria and decay in glomerular filtration rate (GFR) in type 2 diabetes. PATIENTS AND MEASUREMENTS: We studied 256 patients with an average 5-year follow-up. Among others, urinary albumin excretion rate (UAER) was measured on spot sample, GFR was estimated with the CKD-EPI Equation. RESULTS: Baseline UAER and GFR were similar for carriers or non-carriers of the polymorphism. At follow-up no significant changes from baseline were observed for UAER or eGFR in carriers of the Pro12Ala polymorphism whereas a significant increase in UAER [17 (11.3-37.9) versus 24.5 (13.8-49.9) ?g/mg, p < 0.006)] and a significant reduction in the eGFR (82.8 ± 14.5 versus 80.3 ± 17.3 ml/min/1.73, m(2) p = 0.02), were observed in non carriers of the Pro12Ala polymorphism. Progression of nephropathy - defined according to a combined end point of UAER and eGFR- i.e. doubling of baseline UAER to at least 100 ?g/mg, or new onset microalbuminuria, or progression from micro to macroalbuminuria, or 25% reduction of eGFR, or annualized eGFR decline >3 ml/min/year - was significantly less frequent in Ala carriers than non carriers (11.4% vs 35.8%; p < 0.01); HR adjusted for baseline age, AER, eGFR, HbA1c, diabetes duration and blood pressure was 0.32 (0.12-0.80). CONCLUSIONS: This study found that among patients with type 2 diabetes, the PPAR?2 Pro12Ala polymorphism is protective against progression of nephropathy and decay of renal function independent of major confounders.
The PPAR?2 Pro12Ala variant is protective against progression of nephropathy in people with type 2 diabetes
Monticelli A;
2015
Abstract
OBJECTIVE: Cross-sectional studies suggest the association between diabetic nephropathy and the PPAR?2 Pro12Ala polymorphism of the peroxisome proliferator-activated receptor ?2 (PPAR?2). Prospective data are limited to microalbuminuria and no information on renal function is available to date. The present study evaluates the association between the Pro12Ala polymorphism of PPAR?2 and the progression of albuminuria and decay in glomerular filtration rate (GFR) in type 2 diabetes. PATIENTS AND MEASUREMENTS: We studied 256 patients with an average 5-year follow-up. Among others, urinary albumin excretion rate (UAER) was measured on spot sample, GFR was estimated with the CKD-EPI Equation. RESULTS: Baseline UAER and GFR were similar for carriers or non-carriers of the polymorphism. At follow-up no significant changes from baseline were observed for UAER or eGFR in carriers of the Pro12Ala polymorphism whereas a significant increase in UAER [17 (11.3-37.9) versus 24.5 (13.8-49.9) ?g/mg, p < 0.006)] and a significant reduction in the eGFR (82.8 ± 14.5 versus 80.3 ± 17.3 ml/min/1.73, m(2) p = 0.02), were observed in non carriers of the Pro12Ala polymorphism. Progression of nephropathy - defined according to a combined end point of UAER and eGFR- i.e. doubling of baseline UAER to at least 100 ?g/mg, or new onset microalbuminuria, or progression from micro to macroalbuminuria, or 25% reduction of eGFR, or annualized eGFR decline >3 ml/min/year - was significantly less frequent in Ala carriers than non carriers (11.4% vs 35.8%; p < 0.01); HR adjusted for baseline age, AER, eGFR, HbA1c, diabetes duration and blood pressure was 0.32 (0.12-0.80). CONCLUSIONS: This study found that among patients with type 2 diabetes, the PPAR?2 Pro12Ala polymorphism is protective against progression of nephropathy and decay of renal function independent of major confounders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.