The effect of silica nanoparticles on the dynamic behavior of monolayers composed by 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a mixture of DPPC with Palmitic acid (PA), has been investigated by comparing the dilational rheological response of these lipid layers, spread on water and on a silica nanoparticle dispersion. To this aim, the dilational viscoelasticity has been measured against the frequency of the surface area perturbation of the monolayer, according to the Oscillatory Barrier method in a Langmuir trough. These measurements were performed at different values of the surface pressure, corresponding to different degrees of compression of the monolayer. The results show that the incorporation of particles in the layer induces additional surface kinetic processes and, depending on the surface pressure, modifies both the quasi-equilibrium dilational elasticity and the high frequency limit of the viscoelastic modulus. Another important effect concerns the linearity of the dilational rheological response which is appreciably worsened by the presence of nanoparticles. With DPPC being the major component of pulmonary surfactant and PA used as a component in synthetic substitutes of it, the results here obtained are relevant in the framework of wider studies on the effect of nanoparticles on the pulmonary surfactant interfacial properties.

Influence of Silica Nanoparticles on Dilational Rheology of DPPC - Palmitic Acid Langmuir Monolayers

Liggieri L;Santini E;Ferrari M;Ravera F
2012

Abstract

The effect of silica nanoparticles on the dynamic behavior of monolayers composed by 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a mixture of DPPC with Palmitic acid (PA), has been investigated by comparing the dilational rheological response of these lipid layers, spread on water and on a silica nanoparticle dispersion. To this aim, the dilational viscoelasticity has been measured against the frequency of the surface area perturbation of the monolayer, according to the Oscillatory Barrier method in a Langmuir trough. These measurements were performed at different values of the surface pressure, corresponding to different degrees of compression of the monolayer. The results show that the incorporation of particles in the layer induces additional surface kinetic processes and, depending on the surface pressure, modifies both the quasi-equilibrium dilational elasticity and the high frequency limit of the viscoelastic modulus. Another important effect concerns the linearity of the dilational rheological response which is appreciably worsened by the presence of nanoparticles. With DPPC being the major component of pulmonary surfactant and PA used as a component in synthetic substitutes of it, the results here obtained are relevant in the framework of wider studies on the effect of nanoparticles on the pulmonary surfactant interfacial properties.
2012
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
SURFACE DILATATIONAL BEHAVIOR
FOURIER-TRANSFORM RHEOLOGY
AIR-WATER-INTERFACE
File in questo prodotto:
File Dimensione Formato  
prod_328605-doc_100664.pdf

solo utenti autorizzati

Descrizione: Influence of silica nanoparticles on dilational rheology of DPPC-palmitic acid Langmuir monolayers
Dimensione 796.07 kB
Formato Adobe PDF
796.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/295141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 64
social impact