The impact of synaptic vesicle endo-exocytosis on the trafficking of nerve terminal heterotransporters was studied by monitoring membrane expression and function of the GABA transporter-1 (GAT-1) and of type-1/2 glycine (Gly) transporters (GlyT-1/2) at spinal cord glutamatergic synaptic boutons. Experiments were performed by inducing exocytosis in wild-type (WT) mice, in amphiphysin-1 knockout (Amph-1 KO) mice, which show impaired endocytosis, or in mice expressing high copy number of mutant human SOD1 with a Gly93Ala substitution (SOD1(G93A)), a model of human amyotrophic lateral sclerosis showing constitutively excessive Glu exocytosis. Exposure of spinal cord synaptosomes from WT mice to a 35 mM KCl pulse increased the expression of GAT-1 at glutamatergic synaptosomal membranes and enhanced the GAT-1 heterotransporter-induced [H-3]D-aspartate ([H-3]D-Asp) release. Similar results were obtained in the case of GlyT-1/2 heterotransporters. Preventing depolarization-induced exocytosis normalized the excessive GAT-1 and GlyT-1/2 heterotransporter-induced [H-3]D-Asp release in WT mice. Impaired endocytosis in Amph-1 KO mice increased GAT-1 membrane expression and [H-3]GABA uptake in spinal cord synaptosomes. Also the GAT-1 heterotransporter-evoked release of [H-3] D-Asp was augmented in Amph-I KO mice. The constitutively excessive Glu exocytosis in SOD1(G93A) mice resulted in augmented GAT-1 expression at glutamatergic synaptosomal membranes and GAT-1 or GlyT-1/2 heterotransporter-mediated [H-3]D-Asp release. Thus, endo-exocytosis regulates the trafficking of GAT-1 and GlyT-1/2 heterotransporters sited at spinal cord glutamatergic nerve terminals. As a consequence, it can be hypothesized that the excessive GAT-1 and GlyT-1/2 heterotransporter-mediated Glu release, in the spinal cord of SOD1(G93A) mice, is due to the heterotransporter over-expression at the nerve terminal membrane, promoted by the excessive Glu exocytosis.

Exocytosis regulates trafficking of GABA and glycine heterotransporters in spinal cord glutamatergic synapses: A mechanism for the excessive heterotransporter-induced release of glutamate in experimental amyotrophic lateral sclerosis

Usai C;
2015

Abstract

The impact of synaptic vesicle endo-exocytosis on the trafficking of nerve terminal heterotransporters was studied by monitoring membrane expression and function of the GABA transporter-1 (GAT-1) and of type-1/2 glycine (Gly) transporters (GlyT-1/2) at spinal cord glutamatergic synaptic boutons. Experiments were performed by inducing exocytosis in wild-type (WT) mice, in amphiphysin-1 knockout (Amph-1 KO) mice, which show impaired endocytosis, or in mice expressing high copy number of mutant human SOD1 with a Gly93Ala substitution (SOD1(G93A)), a model of human amyotrophic lateral sclerosis showing constitutively excessive Glu exocytosis. Exposure of spinal cord synaptosomes from WT mice to a 35 mM KCl pulse increased the expression of GAT-1 at glutamatergic synaptosomal membranes and enhanced the GAT-1 heterotransporter-induced [H-3]D-aspartate ([H-3]D-Asp) release. Similar results were obtained in the case of GlyT-1/2 heterotransporters. Preventing depolarization-induced exocytosis normalized the excessive GAT-1 and GlyT-1/2 heterotransporter-induced [H-3]D-Asp release in WT mice. Impaired endocytosis in Amph-1 KO mice increased GAT-1 membrane expression and [H-3]GABA uptake in spinal cord synaptosomes. Also the GAT-1 heterotransporter-evoked release of [H-3] D-Asp was augmented in Amph-I KO mice. The constitutively excessive Glu exocytosis in SOD1(G93A) mice resulted in augmented GAT-1 expression at glutamatergic synaptosomal membranes and GAT-1 or GlyT-1/2 heterotransporter-mediated [H-3]D-Asp release. Thus, endo-exocytosis regulates the trafficking of GAT-1 and GlyT-1/2 heterotransporters sited at spinal cord glutamatergic nerve terminals. As a consequence, it can be hypothesized that the excessive GAT-1 and GlyT-1/2 heterotransporter-mediated Glu release, in the spinal cord of SOD1(G93A) mice, is due to the heterotransporter over-expression at the nerve terminal membrane, promoted by the excessive Glu exocytosis.
2015
Istituto di Biofisica - IBF
Amyotrophic lateral sclerosis
GABA heterotransporter
Glutamate excitotoxic
Glutamate release
Glycine heterotransporter
[object Object
Transporter trafficking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/295179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact