The objective of the study is to investigate the potential of retrieving superficial soil moisture content (m(v)) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e. g. from 100 to 10 000 km(2)). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution ( e. g. 1530 km2) by point scale hydrologic models ( or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e. g. 0.01 km(2)). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%.

Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

F Mattia;G Satalino;
2009

Abstract

The objective of the study is to investigate the potential of retrieving superficial soil moisture content (m(v)) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e. g. from 100 to 10 000 km(2)). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution ( e. g. 1530 km2) by point scale hydrologic models ( or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e. g. 0.01 km(2)). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%.
2009
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
ENERGY-BALANCE PROCESSES; REMOTE-SENSING DATA; ATMOSPHERE TRANSFER SCHEME; SPATIALLY-VARIABLE WATER; SURFACE SCATTERING MODEL; C-BAND; MULTIPLE-SCATTERING; BACKSCATTERING; VEGETATION; ROUGHNESS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/29524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 56
social impact