Titan is an icy satellite of Saturn with a dense atmosphere and covered by a global photochemical organic haze. Ground based observations and the Huygens descent probe allowed to retrieve the main spectral signature of the water ice (Griffith et al., 2003 and Coustenis et al., 2005) at the surface, possibly covered by a layer of sedimented organic material (Tomasko et al., 2005). However, the spectrum of the surface is not yet understood. In this study, we find that the surface reflectivity at the Huygens Landing Site (HLS) is well modeled by a layer of water ice grains overlaid by a moist layer of weakly compacted photochemical aggregated aerosols. Moist soils have spectra shifted toward short wavelengths relatively to spectra of dry soils. Cassini observations of Shangri-La region from orbit also show a very dark surface with a reflectivity peak shifted toward short wavelengths in respect to the reflectivity peak of bright surfaces, revealing a dichotomy between terrains based to their spectra in visible.
Titan's surface spectra at the Huygens landing site and Shangri-La
ML Moriconi;
2016
Abstract
Titan is an icy satellite of Saturn with a dense atmosphere and covered by a global photochemical organic haze. Ground based observations and the Huygens descent probe allowed to retrieve the main spectral signature of the water ice (Griffith et al., 2003 and Coustenis et al., 2005) at the surface, possibly covered by a layer of sedimented organic material (Tomasko et al., 2005). However, the spectrum of the surface is not yet understood. In this study, we find that the surface reflectivity at the Huygens Landing Site (HLS) is well modeled by a layer of water ice grains overlaid by a moist layer of weakly compacted photochemical aggregated aerosols. Moist soils have spectra shifted toward short wavelengths relatively to spectra of dry soils. Cassini observations of Shangri-La region from orbit also show a very dark surface with a reflectivity peak shifted toward short wavelengths in respect to the reflectivity peak of bright surfaces, revealing a dichotomy between terrains based to their spectra in visible.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.