In the present work we performed low-frequency mechanical spectroscopy experiments to measure the mechanical modulus of two ionic liquids and its variation during the main phase transitions occurring by varying the temperature, in the both liquid and the solid states. The liquids share the same anion, the bis(trifluoromethanesulfonyl)imide, and present different cations, 1-butyl-1-methylpyrrolidinium and 1-allyl-3-H-imidazolium. A thermally activated relaxation process is found in the liquid phase and is analyzed in terms of a modified Debye model. The obtained parameters provide indications about the nature and the mechanism giving rise to the peak, which is attributed to the ions motion by means of hopping processes. Moreover, density functional calculations were performed, and the comparison with the analysis of the experimental data suggests that the anion conformers are likely to be involved in the different configurations among which the ions can rearrange.

Relaxation Dynamics and Phase Transitions in Ionic Liquids: Viscoelastic Properties from the Liquid to the Solid State

O. Palumbo;F. Trequattrini;F. M. Vitucci;A. Paolone
2015

Abstract

In the present work we performed low-frequency mechanical spectroscopy experiments to measure the mechanical modulus of two ionic liquids and its variation during the main phase transitions occurring by varying the temperature, in the both liquid and the solid states. The liquids share the same anion, the bis(trifluoromethanesulfonyl)imide, and present different cations, 1-butyl-1-methylpyrrolidinium and 1-allyl-3-H-imidazolium. A thermally activated relaxation process is found in the liquid phase and is analyzed in terms of a modified Debye model. The obtained parameters provide indications about the nature and the mechanism giving rise to the peak, which is attributed to the ions motion by means of hopping processes. Moreover, density functional calculations were performed, and the comparison with the analysis of the experimental data suggests that the anion conformers are likely to be involved in the different configurations among which the ions can rearrange.
2015
Istituto dei Sistemi Complessi - ISC
Relaxation Dynamics
Phase Transitions
Ionic Liquids
Viscoelastic Properties
File in questo prodotto:
File Dimensione Formato  
prod_334789-doc_104475.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/295383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact