Copper(ii) complexes of peptides modelling the sequence of the 17-22 residues of rat amylin have been studied by potentiometric, UV-Vis, CD and ESR spectroscopic methods. The peptides were synthesized in N-terminally free forms, NH2-VRSSNN-NH2, NH2-VRSSAA-NH2, NH2-VRAANN-NH2, NH2-VRSS-NH2, NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2, providing a possibility for the comparison of the metal binding abilities of the amino terminus and the -SSNN- domain. The amino terminus was the primary ligating site in all cases and the formation of only mononuclear complexes was obtained for the tetrapeptides. The thermodynamic stability of the (NH2, N(-), N(-)) coordinated complexes was, however, enhanced by the asparaginyl moiety in the case of NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2. Among the hexapeptides the formation of dinuclear complexes was characteristic for NH2-VRSSNN-NH2 demonstrating the anchoring ability of the -SSNN- (SerSerAsnAsn) domain. The complexes of the heptapeptide NH2-GGHSSNN-NH2 were also studied and the data supported the above mentioned anchoring ability of the -SSNN- site.

Potentiometric and spectroscopic studies on the copper(II) complexes of rat amylin fragments. The anchoring ability of specific non-coordinating side chains.

Sanna Daniele;
2015

Abstract

Copper(ii) complexes of peptides modelling the sequence of the 17-22 residues of rat amylin have been studied by potentiometric, UV-Vis, CD and ESR spectroscopic methods. The peptides were synthesized in N-terminally free forms, NH2-VRSSNN-NH2, NH2-VRSSAA-NH2, NH2-VRAANN-NH2, NH2-VRSS-NH2, NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2, providing a possibility for the comparison of the metal binding abilities of the amino terminus and the -SSNN- domain. The amino terminus was the primary ligating site in all cases and the formation of only mononuclear complexes was obtained for the tetrapeptides. The thermodynamic stability of the (NH2, N(-), N(-)) coordinated complexes was, however, enhanced by the asparaginyl moiety in the case of NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2. Among the hexapeptides the formation of dinuclear complexes was characteristic for NH2-VRSSNN-NH2 demonstrating the anchoring ability of the -SSNN- (SerSerAsnAsn) domain. The complexes of the heptapeptide NH2-GGHSSNN-NH2 were also studied and the data supported the above mentioned anchoring ability of the -SSNN- site.
2015
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
Copper(II)
rat amylin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/295550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact