In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [M. Boguna, C. Castellano, and R. Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well-understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasistationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasistationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices.

Lifespan method as a tool to study criticality in absorbing-state phase transitions

Claudio Castellano;
2015

Abstract

In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [M. Boguna, C. Castellano, and R. Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well-understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasistationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasistationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices.
2015
Istituto dei Sistemi Complessi - ISC
Complex networks
absorbing-state phase transitions
File in questo prodotto:
File Dimensione Formato  
prod_331447-doc_105984.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 354.88 kB
Formato Adobe PDF
354.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/296052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact