In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 degrees C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h(-1) and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 degrees C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Methanol steam reforming in an Al2O3 supported thin Pd-layer membrane reactor over Cu/ZnO/Al2O3 catalyst

Liguori S;Iulianelli A;Basile A
2014

Abstract

In this experimental study, a membrane reactor housing a composite membrane constituted by a thin Pd-layer supported onto Al2O3 is utilized to perform methanol steam reforming reaction to produce high-grade hydrogen for PEM fuel cell applications. The influence of various parameters such as temperature, from 280 to 330 degrees C, and pressure, from 1.5 to 2.5 bar, is analyzed. A commercial Cu/Zn-based catalyst is packed in the annulus of the membrane reactor and the experimental tests are performed at space velocity equal to 18,500 h(-1) and H2O:CH3OH feed molar ratio equal to 2.5:1. Results in terms of methanol conversion, hydrogen recovery, hydrogen yield and products selectivities are given. As a best result of this work, 85% of methanol conversion and a highly pure hydrogen stream permeated through the membrane with a CO content lower than 10 ppm were reached at 330 degrees C and 2.5 bar. Furthermore, a comparison between the experimental results obtained in this work and literature data is proposed and discussed. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
2014
Istituto per la Tecnologia delle Membrane - ITM
High-grade hydrogen production
Methanol steam reforming
Supported Pd/Al2O3 membrane
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/296323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact