The effects of a displacive structural phase transition on sliding friction are in principle accessible to nanoscale tools such as atomic force microscopy, yet they are still surprisingly unexplored. We present model simulations demonstrating and clarifying the mechanism and potential impact of these effects. A structural order parameter inside the material will yield a contribution to stick-slip friction that is non-monotonic as temperature crosses the phase transition, peaking at the critical T(c) where critical fluctuations are strongest, and the sliding-induced order-parameter local flips from one value to another more numerous. Accordingly, the friction below T(c) is larger when the order-parameter orientation is such that flips are more effectively triggered by the slider. The observability of these effects and their use for friction control are discussed, for future application to sliding on the surface of and ferro-or antiferrodistortive materials.

Sliding over a Phase Transition

Vanossi A;Santoro G E;Tosatti E
2011

Abstract

The effects of a displacive structural phase transition on sliding friction are in principle accessible to nanoscale tools such as atomic force microscopy, yet they are still surprisingly unexplored. We present model simulations demonstrating and clarifying the mechanism and potential impact of these effects. A structural order parameter inside the material will yield a contribution to stick-slip friction that is non-monotonic as temperature crosses the phase transition, peaking at the critical T(c) where critical fluctuations are strongest, and the sliding-induced order-parameter local flips from one value to another more numerous. Accordingly, the friction below T(c) is larger when the order-parameter orientation is such that flips are more effectively triggered by the slider. The observability of these effects and their use for friction control are discussed, for future application to sliding on the surface of and ferro-or antiferrodistortive materials.
2011
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/296387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact