Anchovy (Engraulis encrasicolus, L.) is one of the most important commercial species of the northern and central Adriatic Sea, as well as one of the most productive fisheries in the whole Mediterranean. In the Adriatic Sea the stock of anchovy is shared between Italy, Croatia and Slovenia. A joint stock assessment was carried out using catch data from all the fleets for the time interval 1975-2009. Analyses were performed using estimates of natural mortality at age obtained by means of two different methods and two population dynamics methods based on the analysis of catch-at-age data: Laurec-Sheperd virtual population analysis (VPA) and integrated catch-at-age (ICA), both tuned to acoustic estimates of abundance. Gislason's estimates for natural mortality appeared to be more realistic and were thus preferred for short-lived species. The general trend of biomass and fishing mortality is similar for the two models, highlighting the major collapse of the stock in 1987. Nevertheless, ICA has enough flexibility to combine all the data available without adding too much complexity in comparison with a VPA approach and seems to perform better in terms of the spawning stock biomass/recruitment relationship and diagnostics (i.e. the retrospective pattern). For the stock status, the exploitation rate from ICA is higher than the suggested threshold of 0.4 proposed by Patterson for small pelagic species.
A joint stock assessment for the anchovy stock of the northern and central Adriatic Sea: comparison of two catch-at-age models
Piera Carpi;Alberto Santojanni;Fortunata Donato;Sabrina Colella;Iole Leonori;Andrea De Felice;
2015
Abstract
Anchovy (Engraulis encrasicolus, L.) is one of the most important commercial species of the northern and central Adriatic Sea, as well as one of the most productive fisheries in the whole Mediterranean. In the Adriatic Sea the stock of anchovy is shared between Italy, Croatia and Slovenia. A joint stock assessment was carried out using catch data from all the fleets for the time interval 1975-2009. Analyses were performed using estimates of natural mortality at age obtained by means of two different methods and two population dynamics methods based on the analysis of catch-at-age data: Laurec-Sheperd virtual population analysis (VPA) and integrated catch-at-age (ICA), both tuned to acoustic estimates of abundance. Gislason's estimates for natural mortality appeared to be more realistic and were thus preferred for short-lived species. The general trend of biomass and fishing mortality is similar for the two models, highlighting the major collapse of the stock in 1987. Nevertheless, ICA has enough flexibility to combine all the data available without adding too much complexity in comparison with a VPA approach and seems to perform better in terms of the spawning stock biomass/recruitment relationship and diagnostics (i.e. the retrospective pattern). For the stock status, the exploitation rate from ICA is higher than the suggested threshold of 0.4 proposed by Patterson for small pelagic species.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.