Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome- wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or upregulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.

Genome-wide definition of promoter and enhancer usage during neural induction of human embryonic stem cells

Petiti L;Peano C;De Bellis G;
2015

Abstract

Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome- wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or upregulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.
2015
Istituto di Tecnologie Biomediche - ITB
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/296438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact