Periplasmic permeases consist of a substrate-binding receptor, located in the periplasm, and a membrane-bound complex composed of two integral membrane proteins and two nucleotide-binding proteins. The receptor interacts with the membrane-bound complex, which, upon receiving this signal, is postulated to hydrolyze ATP and translocate the substrate. We show that a class of mutations in the membrane-bound complex of the histidine permease, which allow transport in the absence of the substrate-binding protein, hydrolyze ATP independently from any signal. The data are compatible with the notion that cross-membrane signaling between the liganded periplasmic receptor and the cytoplasmic ATP-binding site initiates conformational changes leading to ATP hydrolysis and substrate translocation.
Binding protein-independent histidine permease mutants. Uncoupling of ATP hydrolysis from transmembrane signaling
Petronilli V;
1991
Abstract
Periplasmic permeases consist of a substrate-binding receptor, located in the periplasm, and a membrane-bound complex composed of two integral membrane proteins and two nucleotide-binding proteins. The receptor interacts with the membrane-bound complex, which, upon receiving this signal, is postulated to hydrolyze ATP and translocate the substrate. We show that a class of mutations in the membrane-bound complex of the histidine permease, which allow transport in the absence of the substrate-binding protein, hydrolyze ATP independently from any signal. The data are compatible with the notion that cross-membrane signaling between the liganded periplasmic receptor and the cytoplasmic ATP-binding site initiates conformational changes leading to ATP hydrolysis and substrate translocation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.