Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P<inf>inter</inf>= 2.6 × 10<sup>-8</sup>). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, P<inf>difflean-overweight</inf>= 4.7 × 10<sup>-8</sup>), a region that has been associated with several obesity related traits, and TSPYL5 (men, P<inf>difflean-overweight</inf> = 9.1 × 10<sup>-8</sup>), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (P <inf>difflean-obese</inf>= 2 × 10<sup>-4</sup>). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obsogenic environment.
Modulation of genetic associations with serum urate levels by body-mass-index in humans
Huffman Jennifer E;Albrecht Eva;Teumer Alexander;Mangino Massimo;Kapur Karen;Kapur Karen;Johnson Toby;Kutalik Zoltán;Kutalik Zoltán;Pirastu Nicola;Pirastu Nicola;Pistis Giorgio;Lopez Lorna M;Lopez Lorna M;Haller Toomas;Salo Perttu;Goel Anuj;Li Man;Tanaka Toshiko;Dehghan Abbas;Dehghan Abbas;Ruggiero Daniela;Malerba Giovanni;Smith Albert V;Smith Albert V;Nolte Ilja M;Portas Laura;PhippsGreen Amanda;Boteva Lora;Navarro Pau;Johansson Asa;Johansson Asa;Hicks Andrew A;Hicks Andrew A;Polasek Ozren;Esko Tõnu;Esko Tõnu;Esko Tõnu;Peden John F;Harris Sarah E;Harris Sarah E;Murgia Federico;Wild Sarah H;Tenesa Albert;Tenesa Albert;Tin Adrienne;Mihailov Evelin;Grotevendt Anne;Gislason Gauti K;Coresh Josef;Coresh Josef;D'Adamo Pio;D'Adamo Pio;Ulivi Sheila;Vollenweider Peter;Waeber Gerard;Campbell Susan;Kolcic Ivana;Fisher Krista;Viigimaa Margus;Viigimaa Margus;Metter Jeffrey E;Masciullo Corrado;Trabetti Elisabetta;Bombieri Cristina;Sorice Rossella;Döring Angela;Döring Angela;Reischl Eva;Reischl Eva;Strauch Konstantin;Strauch Konstantin;Hofman Albert;Hofman Albert;Uitterlinden Andre G;Uitterlinden Andre G;Waldenberger Melanie;Waldenberger Melanie;Wichmann H Erich;Wichmann H Erich;Wichmann H Erich;Davies Gail;Davies Gail;Gow Alan J;Gow Alan J;Dalbeth Nicola;Stamp Lisa;Smit Johannes H;Kirin Mirna;Nagaraja Ramaiah;Nauck Matthias;Schurmann Claudia;Budde Kathrin;Farrington Susan M;Theodoratou Evropi;Jula Antti;Salomaa Veikko;Sala Cinzia;Hengstenberg Christian;Burnier Michel
2015
Abstract
We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 × 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 × 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight = 9.1 × 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (P difflean-obese= 2 × 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obsogenic environment.
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
breast cancer resistance protein estradiol glycan urate adipocyte body mass carbohydrate synthesis controlled study effect size female gene locus genetic association genetic risk genetic variability human lean body weight major clinical study male obesity regression analysis single nucleotide polymorphism uric acid blood level
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/296469
Citazioni
ND
38
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.