A cathode structure for photon-enhanced thermionic emission was designed for high temperature energy conversion in solar concentrating systems. Surface-hydrogenated diamond is one of the few semiconductors to show negative electron affinity and a work function as low as 1.7 eV if nitrogen-doped, that is connected to a significant thermionic emission at moderate temperatures (up to 800 °C). But diamond is transparent to solar radiation, consequently advanced techniques for preparing an efficient sunlight absorbing diamond are discussed.
Defect Engineering of Diamond Cathodes for High Temperature Solar Cells
A Bellucci;P Calvani;M Girolami;D M Trucchi
2015
Abstract
A cathode structure for photon-enhanced thermionic emission was designed for high temperature energy conversion in solar concentrating systems. Surface-hydrogenated diamond is one of the few semiconductors to show negative electron affinity and a work function as low as 1.7 eV if nitrogen-doped, that is connected to a significant thermionic emission at moderate temperatures (up to 800 °C). But diamond is transparent to solar radiation, consequently advanced techniques for preparing an efficient sunlight absorbing diamond are discussed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


