In the framework of S3 project "Short term earthquake forecasting" supported by Department of Civil Protection (DPC) and National Institute of Geophysics and Volcanology (INGV), a magnetotelluric (MT) station was installed in the Pollino area (southern Italy) during September 2012 by the Institute of Methodologies for Environmental Analysis (IMAA-CNR, Italy) in order to investigate possible correlation between electromagnetic signals and seismicity. For the last two years Pollino area has been characterized by swarm-type seismicity, culminating with the earthquake occurred on October 25, 2012 of magnitude M-W=5.0. After the mainshock, the INGV installed a seismic station close to the MT station. In this paper, we focus the analysis on the largest event (M-L=3.6) recorded during the co-located electromagnetic and seismic experiment. We applied time-frequency misfit criteria based on the continuous Morlet wavelet transform to compare the electric and seismic homologous components: this analysis confirms an overall good waveform similarity between the signals, but also some interesting differences in amplitude for frequencies above 1 Hz in correspondence of the arrival of particular seismic phases that need further investigations.

The Pollino 2011-2012 seismic swarm (southern Italy): first results of the M-L=3.6 aftershock recorded by co-located electromagnetic and seismic stations

Balasco M;Lapenna V;Stabile T A;Telesca L
2015

Abstract

In the framework of S3 project "Short term earthquake forecasting" supported by Department of Civil Protection (DPC) and National Institute of Geophysics and Volcanology (INGV), a magnetotelluric (MT) station was installed in the Pollino area (southern Italy) during September 2012 by the Institute of Methodologies for Environmental Analysis (IMAA-CNR, Italy) in order to investigate possible correlation between electromagnetic signals and seismicity. For the last two years Pollino area has been characterized by swarm-type seismicity, culminating with the earthquake occurred on October 25, 2012 of magnitude M-W=5.0. After the mainshock, the INGV installed a seismic station close to the MT station. In this paper, we focus the analysis on the largest event (M-L=3.6) recorded during the co-located electromagnetic and seismic experiment. We applied time-frequency misfit criteria based on the continuous Morlet wavelet transform to compare the electric and seismic homologous components: this analysis confirms an overall good waveform similarity between the signals, but also some interesting differences in amplitude for frequencies above 1 Hz in correspondence of the arrival of particular seismic phases that need further investigations.
2015
Istituto di Metodologie per l'Analisi Ambientale - IMAA
electric and magnetic field
electrokinetic effects
earthquakes
time-frequency analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact