We investigate the relation between t-closeness, a well-known model of data anonymization, and alpha-protection, a model of data discrimination. We show that t-closeness implies bd(t)-protection, for a bound function bd() depending on the discrimination measure at hand. This allows us to adapt an inference control method, the Mondrian multidimensional generalization technique, to the purpose of non-discrimination data protection. The parallel between the two analytical models raises intriguing issues on the interplay between data anonymization and nondiscrimination research in data mining.
Data anonimity meets non-discrimination
Ruggieri S
2013
Abstract
We investigate the relation between t-closeness, a well-known model of data anonymization, and alpha-protection, a model of data discrimination. We show that t-closeness implies bd(t)-protection, for a bound function bd() depending on the discrimination measure at hand. This allows us to adapt an inference control method, the Mondrian multidimensional generalization technique, to the purpose of non-discrimination data protection. The parallel between the two analytical models raises intriguing issues on the interplay between data anonymization and nondiscrimination research in data mining.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_326360-doc_99238.pdf
solo utenti autorizzati
Descrizione: Data anonimity meets non-discrimination
Tipologia:
Versione Editoriale (PDF)
Dimensione
360.56 kB
Formato
Adobe PDF
|
360.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.