Thin films made of organic semiconductors (-sexithiophene, PDAS and PBAS) have been printed and the impact on morphology studied by optical, atomic force and electron microscopy. Surfaces in contact with the stamp during printing undergo a change towards smoother and more ordered material at the macromolecular scale. Interdigitated nanoelectrodes to be used as source and drain in TFTs have been made and printed down to 100 nm. PDAS and PBAS can be printed at room temperature and preserve their printed feature provided they are cross-linked afterwards.
Nanoimprint lithography for organic electronics
Cavallini M;Murgia M;Ruani G;Biscarini F;
2002
Abstract
Thin films made of organic semiconductors (-sexithiophene, PDAS and PBAS) have been printed and the impact on morphology studied by optical, atomic force and electron microscopy. Surfaces in contact with the stamp during printing undergo a change towards smoother and more ordered material at the macromolecular scale. Interdigitated nanoelectrodes to be used as source and drain in TFTs have been made and printed down to 100 nm. PDAS and PBAS can be printed at room temperature and preserve their printed feature provided they are cross-linked afterwards.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.