We present an innovative approach for solving Four Dimensional Variational Data Assimilation (4D-VAR DA) problems. The approach we consider starts from a decomposition of the physical domain; it uses a partitioning of the solution and a modified regularization functional describing the 4D-VAR DA problem on the decomposition. We provide a mathematical formulation of the model and we perform a feasibility analysis in terms of computational cost and of algorithmic scalability. We use the scale-up factor which measure the performance gain in terms of time complexity reduction. We verify the reliability of the approach on a consistent test case (the Shallow Water Equations).

On the problem-decomposition of scalable 4D-Var Data Assimilation models

Carracciuolo;
2015

Abstract

We present an innovative approach for solving Four Dimensional Variational Data Assimilation (4D-VAR DA) problems. The approach we consider starts from a decomposition of the physical domain; it uses a partitioning of the solution and a modified regularization functional describing the 4D-VAR DA problem on the decomposition. We provide a mathematical formulation of the model and we perform a feasibility analysis in terms of computational cost and of algorithmic scalability. We use the scale-up factor which measure the performance gain in terms of time complexity reduction. We verify the reliability of the approach on a consistent test case (the Shallow Water Equations).
2015
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
978-1-4673-7812-3
Data Assimilation
Inverse Problem
Ocean Models
Problem Decomposition
Scalable Algorithm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact