Despite the popularity of linear process models in signal and image processing, various real life phenomena exhibit nonlinear characteristics. Compromising between the realistic and computationally heavy nonlinear models and the simplicity of linear estimation methods, linear in the parameters nonlinear models such as polynomial autoregressive (PAR) models have been accessible analytical tools for modelling such phenomena. In this work, we aim to demonstrate the potentials of Reversible Jump Markov Chain Monte Carlo (RJMCMC) which is a successful statistical tool in model dimension estimation in nonlinear process identification. We explore the capability of RJMCMC in jumping not only between spaces with dif- ferent dimensions, but also between different classes of models. In particular, we demonstrate the success of RJMCMC in sampling in linear and nonlinear spaces of varying dimensions for the estimation of PAR processes.
Estimation of the nonlinearity degree for polynomial autoregressive processes with RJMCMC
Kuruoglu E E;
2015
Abstract
Despite the popularity of linear process models in signal and image processing, various real life phenomena exhibit nonlinear characteristics. Compromising between the realistic and computationally heavy nonlinear models and the simplicity of linear estimation methods, linear in the parameters nonlinear models such as polynomial autoregressive (PAR) models have been accessible analytical tools for modelling such phenomena. In this work, we aim to demonstrate the potentials of Reversible Jump Markov Chain Monte Carlo (RJMCMC) which is a successful statistical tool in model dimension estimation in nonlinear process identification. We explore the capability of RJMCMC in jumping not only between spaces with dif- ferent dimensions, but also between different classes of models. In particular, we demonstrate the success of RJMCMC in sampling in linear and nonlinear spaces of varying dimensions for the estimation of PAR processes.File | Dimensione | Formato | |
---|---|---|---|
prod_333674-doc_103670.pdf
solo utenti autorizzati
Descrizione: Estimation of the nonlinearity degree for polynomial autoregressive processes with RJMCMC
Tipologia:
Versione Editoriale (PDF)
Dimensione
197.4 kB
Formato
Adobe PDF
|
197.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.