Substitution of constituent atoms and/or changes of crystal structure are routinely used to tailor the fundamental properties of a semiconductor. Here, it is shown that such a tailoring can also be realized thanks to a novel hydrogen effect. Four hydrogen atoms can screen the effect the crystal potential has on a constituent cation, thus generating a solitary cation: an effectively isolated impurity, so chemically different from the unscreened constituent cations that it strongly perturbs the electronic properties of the material by increasing its fundamental band-gap energy. Such a hydrogen-induced screening effect is removed by thermal treatments, thus permitting reversible modifications of both the "crystal chemistry" and material's properties. This phenomenon, observed in InN and other topical nitrides, should permit the development of a new class of materials as well as the fabrication of photonic devices and optical integrated circuits with distinct, tailor-made regions emitting or absorbing light, all integrated onto a monolithic semiconductor structure.

Genesis of "Solitary Cations" Induced by Atomic Hydrogen

Pettinari G;Filippone F;Mattioli G;Amore Bonapasta A
2015

Abstract

Substitution of constituent atoms and/or changes of crystal structure are routinely used to tailor the fundamental properties of a semiconductor. Here, it is shown that such a tailoring can also be realized thanks to a novel hydrogen effect. Four hydrogen atoms can screen the effect the crystal potential has on a constituent cation, thus generating a solitary cation: an effectively isolated impurity, so chemically different from the unscreened constituent cations that it strongly perturbs the electronic properties of the material by increasing its fundamental band-gap energy. Such a hydrogen-induced screening effect is removed by thermal treatments, thus permitting reversible modifications of both the "crystal chemistry" and material's properties. This phenomenon, observed in InN and other topical nitrides, should permit the development of a new class of materials as well as the fabrication of photonic devices and optical integrated circuits with distinct, tailor-made regions emitting or absorbing light, all integrated onto a monolithic semiconductor structure.
2015
Istituto di fotonica e nanotecnologie - IFN
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Band-gap opening
Density functional theory
Hydrogen effects
Nitrides
Theoretical simulations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/297782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact