We use a Spatial Light Modulator (SLM) to produce arrays of Bessel beams by using multiple axicon phase-masks on the SLM. This approach utilises the whole of the SLM, rather than just a thin annular region (which is the case if the SLM is in the far-field of the generated Bessel beams). Using the whole SLM rather than just an annular region means that the required intensity on the SLM is an order of magnitude lower for a given power in the Bessel beams. Spreading the power over the whole SLM is important for high-power applications such as laser micromachining. We allow the axicons to overlap and interfere in the hologram, so the axial length of the Bessel beam core is maintained as we add more beams to the array. © 2011 EDP Sciences and Springer.
Efficient generation of Bessel beam arrays by means of an SLM
Jedrkiewicz O;
2011
Abstract
We use a Spatial Light Modulator (SLM) to produce arrays of Bessel beams by using multiple axicon phase-masks on the SLM. This approach utilises the whole of the SLM, rather than just a thin annular region (which is the case if the SLM is in the far-field of the generated Bessel beams). Using the whole SLM rather than just an annular region means that the required intensity on the SLM is an order of magnitude lower for a given power in the Bessel beams. Spreading the power over the whole SLM is important for high-power applications such as laser micromachining. We allow the axicons to overlap and interfere in the hologram, so the axial length of the Bessel beam core is maintained as we add more beams to the array. © 2011 EDP Sciences and Springer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.