The endoplasmic reticulum (ER) interacts and cooperates with other organelles as a central hub in cellular homeostasis. In particular, the ER is the first station along the secretory pathway, where client proteins fold and assemble before they travel to their final destination elsewhere in the endomembrane system or outside the cell. Protein folding and disulfide bond formation go hand in hand in the ER, a task that is achieved with the help of ER-resident chaperones and other folding factors, including oxidoreductases that catalyze disulfide bond formation. Yet, when their combined effort is in vain, client proteins that fail to fold are disposed of through ER-associated degradation (ERAD). The ER folding and ERAD machineries can be boosted through the unfolded protein response (UPR) if required. Still, protein folding in the ER may consistently fail when proteins are mutated due to a genetic defect, which, ultimately, can lead to disease. Novel developments in all these fields of study and how new insights ultimately can be exploited for clinical or biotechnological purposes were highlighted in a rich variety of presentations at the ER & Redox Club Meeting that was held in Venice from 15 to 17 April 2015. As such, the meeting provided the participants an excellent opportunity to mingle and discuss key advancements and outstanding questions on ER function in health and disease.
Characterization of recombinant AtPDIL5-1, the smallest putative PDI- like protein of Arabidopsis thaliana
William Remelli;Aldo Ceriotti;Aldo Grasso;Anna Paola Casazza
2015
Abstract
The endoplasmic reticulum (ER) interacts and cooperates with other organelles as a central hub in cellular homeostasis. In particular, the ER is the first station along the secretory pathway, where client proteins fold and assemble before they travel to their final destination elsewhere in the endomembrane system or outside the cell. Protein folding and disulfide bond formation go hand in hand in the ER, a task that is achieved with the help of ER-resident chaperones and other folding factors, including oxidoreductases that catalyze disulfide bond formation. Yet, when their combined effort is in vain, client proteins that fail to fold are disposed of through ER-associated degradation (ERAD). The ER folding and ERAD machineries can be boosted through the unfolded protein response (UPR) if required. Still, protein folding in the ER may consistently fail when proteins are mutated due to a genetic defect, which, ultimately, can lead to disease. Novel developments in all these fields of study and how new insights ultimately can be exploited for clinical or biotechnological purposes were highlighted in a rich variety of presentations at the ER & Redox Club Meeting that was held in Venice from 15 to 17 April 2015. As such, the meeting provided the participants an excellent opportunity to mingle and discuss key advancements and outstanding questions on ER function in health and disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.